2 JEE Main 2021 (Online) 27th July Evening Shift

MCQ (Single Correct Answer)

Consider a circle C which touches the y-axis at (0, 6) and cuts off an intercept $6\sqrt{5}$ on the x-axis. Then the radius of the circle C is equal to :

- A $\sqrt{53}$
- **B** 9
- 0 8
- √82

Explanation

$$r=\sqrt{6^2+\left(3+\sqrt{5}\right)^2}$$

$$=\sqrt{36+45}=9$$

JEE Main 2021 (Online) 26th August Evening Shift

MCQ (Single Correct Answer)

A circle C touches the line x = 2y at the point (2, 1) and intersects the circle

 C_1 : $x^2 + y^2 + 2y - 5 = 0$ at two points P and Q such that PQ is a diameter of C_1 . Then the diameter of C is :

- $\bigcirc 7\sqrt{5}$
- B 15
- $\sqrt{285}$
- D $4\sqrt{15}$

Explanation

$$(x - 2)^2 + (y - 1)^2 + \lambda(x - 2y) = 0$$

C:
$$x^2 + y^2 + x(\lambda - 4) + y(-2 - 2\lambda) + 5 = 0$$

$$C_1 : x^2 + y^2 + 2y - 5 = 0$$

$$S_1 - S_2 = \emptyset$$
 (Equation of PQ)

$$(\lambda - 4)x - (2\lambda + 4)y + 10 = 0$$
 Passes through $(0, -1)$

$$\Rightarrow \lambda = -7$$

$$C: x^2 + y^2 - 11x + 12y + 5 = 0$$

$$=\frac{\sqrt{245}}{4}$$

Diameter = $7\sqrt{5}$

The number of integral values of k for which the line, 3x + 4y = k intersects the

$$x^2 + y^2 - 2x - 4y + 4 = 0$$
 at two distinct points is _____.

Answer

Correct Answer is 9

Explanation

Circle
$$x^2 + y^2 - 2x - 4y + 4 = 0$$

$$\Rightarrow$$
 $(x - 1)^2 + (y - 2)^2 = 1$

Centre: (1, 2), radius = 1

Line 3x + 4y - k = 0 intersects the circle at two distinct points.

⇒ distance of centre from the line < radius</p>

$$\Rightarrow \left| \frac{3 \times 1 + 4 \times 2 - k}{\sqrt{3^2 + 4^2}} \right| < 1$$

$$\Rightarrow$$
 |11 - k| < 5

$$\Rightarrow$$
 6 < k < 5

$$\Rightarrow$$
 k \in {7, 8, 9,15} since k \in I

.. Total 9 integral value of k.